Lecture 5 Pulmonary circulation

Objectives

- Features of the pulmonary circulation
- Factors affecting pulmonary blood flow
- The differences in ventilation & perfusion in different parts of the lung

PULMONARY CIRCULATION

Features of pulmonary circulation

- 1) Lung is the only organ receiving the entire CO
- 2) Less affected by gravitational forces
- 3) Pulmonary blood vessels:
 - Pul arteries: thin walled (30% as thick as the wall of the aorta) little SM and elastic tissue and have larger diameter
 - Pul capillaries: larger than systemic capillaries and denser with multiple anastomoses
 - Pul veins: highly dispensable and act a blood reservoir

4) Pulmonary blood pressure

Pul circulation (low-pr) (24/9mmHg): Systemic (120/80mmHg)

tion

The it to

System

- Pul capillary pr is 10mmHg (systemic=30mmHg)
- 5) Pulmonary blood flow is influenced by intrapleural pr.
 6) Pulmonary circulation acts as a filter which prevents emboli from reaching the systemic circulation (fibrinolytic system)
- 7) The pulmonary arteries are the only postnatal arteries that carry deoxygenated blood, and pulmonary veins are the only postnatal veins that carry oxygenated blood.
- 8) Lymphatic channels are abundant in lungs (keep alveoli dry and maintain -ve intrapleural pressure)
 9) ACE produced by endothelial cells of pulmonary vessels → maintaining blood pr

10) Blood vessels of lung consist of two sets originating from two different sources, performing different functions.

11) Physiologic shunt

- Shunt: blood that has not been oxygenated in the lungs is added to systemic circulation
- Lung: Bronchopulmonary anastomosis.
 - Some bronchial venous blood (deoxygenated blood) enters pulmonary veins (oxygenated blood) bypassing the right ventricle and returns to left side of heart.
 - This constitutes 2% of blood in systemic circulation.

Regulation of pulmonary blood flow:

1) Cardiac out put:

• $\uparrow CO \rightarrow \uparrow$ pulmonary blood flow

2) Pulmonary vascular resistance:

Pulmonary perfusion is inversely proportional to pulmonary vascular resistance

3) Nervous factors:

- Sympathetic → vasoconstriction → ↓pulmonary perfusion
- Parasympathetic \rightarrow vasodilatation \rightarrow \uparrow pulmonary perfusion

4) Chemical factors:

- Hypoxia, hypercapnia, and acidosis → vasoconstriction →↑ pulmonary arterial pressure (pul hypertension)
 - \curvearrowleft In all others areas other than lung, hypoxia produces vasodilatation
 - \bigcirc COPD \rightarrow hypoxia \rightarrow vasoconstriction \rightarrow pulmonary hypertension \rightarrow RHF

5) Effects of gravity:

 In the erect posture (Apex of lung above the level of heart, base below) → linear ↑ in pulmonary blood flow from the apex to the base of the lung.

6) Hormonal factors:

- Pulmonary arteriolar vasoconstriction (angiotensin II, epinephrine, norepinephrine, PGF2α)
- Vasodilator (Ach, NO)
- 7) Phases of respiration:
 - Inspiration →pulmonary vasodilatation → \uparrow pul. perfusion
 - Expiration \rightarrow vasoconstriction $\rightarrow \downarrow$ pul. perfusion.

Ventilation perfusion ration (V/Q):

- Definition: alveolar ventilation (4L/min) / pulmonary blood flow (CO) 5L/min
- Difference in different parts of the lung
- Normal value
 - At the apex of the lung (V/Q = 3)
 - at the middle of the lung (V/Q=0.8)
 - At the base of the lung (V/Q=0.6)
- For proper O_2 and CO_2 exchange in the lungs, ventilation and perfusion must be matched.
 - In the upright posture, ventilation and perfusion are less at the apex and more towards the base (gravity)
 - In lying down posture, the posterior part of the lung is well ventilated and perfused than the anterior part.

• Gravity dependent reduction in perfusion is more marked at the apex than reduction for ventilation $\rightarrow V/Q$ is highest at the apex and lowest at the base in upright posture.

	Alveolar pressure cmH ₂ O	Pleural pressure cmH ₂ O	Trans- pulmonary cmH ₂ O	Lung expansion	V	Q	V/Q
Apex	0	-10	10	More	\rightarrow	\rightarrow	13
							0.8
Base	0	-2.5	2.5	Less	\uparrow	1	↓ 0.6

Clinical Importance:

- If one lung is not functioning, the patient is advised to lie on the side in which the lung is functioning so that this lung will be well ventilated and perfused.
- Pulmonary tuberculosis affects apex of the lung first:
 - ← High V/Q at the apex of the lung → more O_2 is available at the apex of lung → favorable environment for the growth of tubercle bacilli (aerobic bacteria)
 - Poor perfusion at the apex. Antibodies in the blood do not reach the apex satisfactorily. So, apex of the lung is more vulnerable to bacterial attack.

